Derivation of test data curve fits - CO vs O₂

The CO operating curves for each OFA damper setting were calculated with a least squares fit through the data points using the following equation:

$$y = cx_p$$

where y is corrected stack CO (ppm), x is flue gas O₂%, c and b are constants.

The shape of the curves using this equation resemble published CO/excess air combustion curves. Plots of the CO data from all the OFA damper settings also show a power curve correlation to flue gas O_2 .

The following tables show the test CO data points, derived constants, and r² values for each OFA damper setting test series.

No Overfire Air		
%02	CO (ppm)	
1.7	696	
2.1	240	
2.6	41	
3.1	2.3	
3.2	13	
r ² = 0.8916		
c = 47259		
b = -7.6817		

10% Overfire Air		
%O2	CO (ppm)	
1.7	899	
1.9	242	
2.5	54	
3.0	22	
3.3	3	
$r^2 = 0.9568$		
c = 66265		
b = -7.9824		

12% Overfire Air		
%02	CO (ppm)	
1.9	212	
2.5	169	
2.7	161	
3.0	20	
$r^2 = 0.477$		
c = 4029.2		
b = -4.0112		

14% Overfire Air		
%02	CO (ppm)	
2.0	302	
2.4	50	
2.7	43	
3.8	33	
$r^2 = 0.7097$		
c = 1372.4		
b = -3.0919		